[image:][image:]CMR ENGINEERING COLLEGE
[image:]Accredited by NBA,Affililated to JNTU,Hyderabad
 Kandlakoya(v), Medchal Road,Hyderabad-501401

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
 ACADEMIC YEAR – 2018-2019

Subject: Design and Analysis Algorithm Year/Semester: III-I, Section-C
Innovative practice: Flipped Class	Type of Learning: Collaborative Learning
Topic: Backtracking Techniques	Date: 18.09.2018

Innovative Practice Description
· Unit / Topic: Unit V / Backtracking Techniques
· Course Outcome: CO5
· Topic Learning Outcome: TLO11
· Activity Chosen: Flipped Classroom
· Justification:
Backtracking is one of the important topics, repeatedly asked in university questions. This activity makes the students to get a sound knowledge in this concept. Students can prepare individually about a topic by watching the lecture video and share their ideas with their classmates that enhance their knowledge and oral communication skills.
· Time Allotted for the Activity: 30 Minutes

· Details of the Implementation:
· Learning materials such as video and documents about backtracking algorithms were sent to the student’s mail and Canvas, one week before conducting this activity.
· Instruct the students to watch the video individually at their home and take the notes according to their understanding level.
· On the day of the activity, small teams were formed by their own interest.
· Each student in a group discusses among the peer members in the concept of backtracking algorithms based on their self-learning and write the points for Presentation within 10 minutes.
· Once they prepared the content for presentation with their peer members, each group present about the different problems solved using backtracking algorithms for maximum of 5 minutes.
· CO – PO / PSO mapping:
	CO
	PO1
	PO2
	PO3
	PO4
	PO10
	PSO1
	PSO2
	PSO3

	CO1
	3
	1
	1
	1
	2
	2
	2
	1

(1 – Low	2 – Moderate	3 – High)

· PO / PSO mapped:

	Innovative practice
	PO1
	PO2
	PO3
	PO4

	
	3
	1
	1
	1

	

Justification for correlation
	Backtracking technique is used for analysis of algorithm.
	Backtracking technique is used in analysis of engineering problems
	To identify solution for complex problems using backtracking technique
	To identify solution for complex problems using backtracking algorithm.

	
	PO10
	PSO1
	PSO2
	PSO3

	
	2
	2
	2
	1

	
	
To present solution for complex problem solutions with backtracking algorithm.
	
Able to use these algorithm design techniques in Information Technology
	
Able to use these algorithms in analyzing and developing reliable IT Solutions
	Algorithm design techniques are helpful in solving real world problems in Industry and
Research.

· Images / Screenshot of the practice:

· Reflective Critique:
· Feedback of practice from students and other stakeholders:
· The students were actively participated.
· Students were able to explored their knowledge on the backtracking algorithms to solve n-queens, subset sum and Hamiltonian circuit problems.
· This activity makes all the students to gain well knowledge on how to apply backtracking techniques on different problems.

· Benefit of the practice:
· Students were actively participated in this activity.
· From this activity, the students can get more clarity in the particular topic by discussing and sharing their views with the other students in the class.
· Learning at home automatically becomes student-centric rather than teacher- centric.

· Challenges faced in implementation:
· Due to time constraints, only few group of students were made to share the concepts by a random call.
· Some team members are hesitated and lack to share the concepts that they learnt and discussed.

 Faculty Incharge	 HOD(CSE)

CS603PC: DESIGN AND ANALYSIS OF ALGORITHMS

III Year B.Tech. CSE II-Sem	L	T P C
3	1	0 4
Prerequisites:
1. A course on “Computer Programming and Data Structures”
2. A course on “Advanced Data Structures”

Course Objectives:
· Introduces the notations for analysis of the performance of algorithms.
· Introduces the data structure disjoint sets.
· Describes major algorithmic techniques (divide-and-conquer, backtracking, dynamic programming, greedy, branch and bound methods) and mention problems for which each technique is appropriate;
· Describes how to evaluate and compare different algorithms using worst-, average-, and best- case analysis.
· Explains the difference between tractable and intractable problems, and introduces the problems that are P, NP and NP complete.

Course Outcomes:
· Ability to analyze the performance of algorithms
· Ability to choose appropriate data structures and algorithm design methods for a specified application
· Ability to understand how the choice of data structures and the algorithm design methods impact the performance of programs

UNIT - I
Introduction: Algorithm, Performance Analysis-Space complexity, Time complexity, Asymptotic Notations- Big oh notation, Omega notation, Theta notation and Little oh notation.
Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen’s matrix multiplication.

UNIT - II
Disjoint Sets: Disjoint set operations, union and find algorithms
Backtracking: General method, applications, n-queen’s problem, sum of subsets problem, graph coloring

UNIT - III
Dynamic Programming: General method, applications- Optimal binary search trees, 0/1 knapsack problem, All pairs shortest path problem, Traveling sales person problem, Reliability design.

UNIT - IV
Greedy method: General method, applications-Job sequencing with deadlines, knapsack problem, Minimum cost spanning trees, Single source shortest path problem.

UNIT - V
Branch and Bound: General method, applications - Travelling sales person problem, 0/1 knapsack problem - LC Branch and Bound solution, FIFO Branch and Bound solution.
NP-Hard and NP-Complete problems: Basic concepts, non deterministic algorithms, NP - Hard and NP-Complete classes, Cook’s theorem.

TEXT BOOK:
1. Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni and Rajasekharan, University Press.

REFERENCE BOOKS:

1. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearson education.
2. Introduction to Algorithms, second edition, T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, PHI Pvt. Ltd./ Pearson Education.
3. Algorithm Design: Foundations, Analysis and Internet Examples, M.T. Goodrich and R. Tamassia, John Wiley and sons.

DESIGN AND ANALYSIS OF ALGORITHMS
UNIT-V – BACKTRACKING
Backtracking: General method, Applications- N-QUEEN Problem, Sum of Sub Sets problem, Graph Coloring, Hamiltonian Cycles.
-0-0-0-0-

Introduction

Backtracking is a refinement of the brute force approach, which systematically searches for a solution to a problem among all available options. It does so by assuming that the solutions are represented by vectors (v1, ..., vm) of values and by traversing, in a depth first manner, the domains of the vectors until the solutions are found.

When invoked, the algorithm starts with an empty vector. At each stage it extends the partial vector with a new value. Upon reaching a partial vector (v1, ..., vi) which can’t represent a partial solution, the algorithm backtracks by removing the trailing value from the vector, and then proceeds by trying to extend the vector with alternative values.

ALGORITHM try(v1,...,vi)
{
IF (v1,...,vi) is a solution THEN RETURN (v1,...,vi) FOR each v DO
IF (v1,...,vi,v) is acceptable vector THEN sol = try(v1,...,vi,v)
IF sol != () THEN RETURN sol END
END RETURN ()
}
If Si is the domain of vi, then S1 × ... × Sm is the solution space of the problem. The validity criteria used in checking for acceptable vectors determines what portion of that space needs to be searched, and so it also determines the resources required by the algorithm.

The traversal of the solution space can be represented by a depth-first traversal of a tree. The tree itself is rarely entirely stored by the algorithm in discourse; instead just a path toward a root is stored, to enable the backtracking.

In case of greedy and dynamic programming techniques, we will use Brute force approach. It means, we will evaluate all possible solutions, among which, we select one solution as optimal solution. In backtracking technique, we will get same optimal solution with less number of steps. So we use backtracking technique. We can solve problems in an efficient way when compared to other methods like greedy method and dynamic programming. In this we will use bounding functions (criterion functions), implicit and explicit conditions. While explaining the general method of backtracking technique, there we will see implicit and explicit constraints. The major advantage of backtracking method is, if a partial solution (x1,x2,x3…..,xi) can’t lead to optimal solution then (xi+1…xn) solution may be ignored entirely.

Explicit constraints: These are rules which restrict each xi to take on values only from a given set.
Example
1) Knapsack problem, the explicit constraints are,
i) xi=0 or 1 ii)0<=xi<=1
2) 4-queens problem : in 4 queens problem, the 4 queens can be placed in 4x4 chess board in 44 ways.

Implicit constraints: These are rules which determine which of the tuples in the solution space satisfy criterion function.

Example: In 4 queens problem, the implicit constraints are no 2 queens can be on the same row, same column and same diagonal.

Let us see some terminology which is being used in this method.

1) Criterion Function: it is a function p(x1,x2,x3,…xn) which needs to be maximized or minimized for a given problem.

2) Solution Space : All tuples that satisfy the explicit constraints define a possible solution space for a particular instance ‘i’ of the problem.
For example consider the following tree. ABD, ABE, AC are the tuples in solution space.
[image:]
Fig) The organization of a solution space

3) Problem state: each node in the tree organization defines a problem state. So, A,B ,C are problem states.
[image:]
Fig) Tree (Problem State)

4) Solution states: These are those problem states S for which the path from the root to S define a tuple in the solution space.
[image:]
Fig) Tree (Solution state)

Here square nodes indicate solution. For the above solution space, there exists 3 solution states. These solution states represented in the form of tuples i.e. (1,2,4), (1,3,6) and (1,3,7) are the solution states.

5) state space tree: if we represent solution space in the form of a tree then the tree is referred as the state space tree.

For example given is the state space tree of 4-queen problem. Initially x1=1 or 2 or 3 or 4. It means we can place first queen in either of 1/2/3/4 column. If x1=1 then x2 can be paced in either 2nd,3rd , or 4th column. If x2=2 then x3 can be placed either in 3rd or 4th column. If x3=3 then x4=4. So nodes 1-2-3-4-5 is one solution in solution space. It may or may not be feasible solution. Similarly we can observe the remaining solutions in the figure.

[image:]
Fig) Tree organization of the 4 queen solution space

6) Answer states : These solution states s for which the path from the root to S defines a tuple which is a member of the set of solutions.(i.e. it satisfies the implicit constraints) of the problem. Here 3,4, are answer states. (1,3) and (1,2,4) are solution states.
[image:]
Fig) Tree (answer states)

7) Live node: A node which has been generated and all of whose children have not yet been generated is live node. In the fig (a) node A is called live node since the children of node A have not yet been generated.
[image:]
In fig (b) node A is not a live node but B,C are live nodes.
In fig(c) nodes A,B are not live and D,E C are live nodes.

8) E-node : The live node whose children are currently being generated is called E-node.(node being expanded).
[image:]
9) Dead node: it is a generated node that is either not to be expanded further or one for which all of its children have been generated.
Ex)In figure(a) nodes A,B,C are dead nodes since node A’s children already generated and Nodes B,C are not expanded.
[image:]

In figure (b) assumed that node B can generate one more node so nodes A,D,C are dead nodes.

Applications:
1) n-Queens Problem (4-Queens and 8-Queens Problem)

Consider an nxn chess board. Let there are n Queens. These n Queens are to be placed on the nxn chess board so that no two queens are on the same column, same row or same diagonal.

n-queens Problem: The n-queens problem is a generalization of the 8-queens problem. Now n-queens are to be placed on an nxn cross board so that no two attack; that is no two queens are on the same row, column, or diagonal. The solution space consists of all n! permutations of n-tuple (1,2,3,..n).

The following figure shows a possible tree organization for the case n = 4. A tree such as this is called a permutation tree. The edges are labeled by possible values of xi.
[image:]

Figure)The organization of 4-queens solution space

Edges from level 1 to level 2 nodes specify the values for x1. Thus the left most sub-tree contains all solutions with x1=1.

Edges from level i to level i+1 are labeled with the values of xi. The solution space is defined by all paths from the root node to a leaf node. There are 4!=24 leaf nodes in the permutation tree.

If we imagine the chess board squares being numbered as the indices of the two dimensional array a[1..n,1..n] then we observe that every element on the same diagonal that runs from upper left to lower right has the same row-col value.

1 2 3 4 5 6 7 8
	
	1
	
	
	Q
	
	
	
	
	
	

	
	2
	
	
	
	
	Q
	
	
	
	
	

	
	3
	
	
	
	
	
	
	Q
	
	
	

	
	4
	Q
	
	
	
	
	
	
	
	
	

	
	5
	
	
	
	
	
	Q
	
	
	
	

	
	6 Q
	
	
	
	
	
	
	
	
	
	

	
	7
	
	Q
	
	
	
	
	
	
	
	

	
	8
	
	
	
	Q
	
	
	
	
	
	

	
Consider the
	
queen
	
at
	
a[4,2].
	
The
	
squares
	
that
	
are

diagonal to this queen (running from upper left to lower right) are a[3,1],a[5,3], a[6,4], a[7,5],a[8,6]. All these squares have a (row – column) value of 2. Also every element on the same diagonal that goes from the upper right to the lower left has the same (row + column) value.

Suppose two queens are placed at positions (i,j) and (k,l)then by the above we can say they are on the same diagonal if

i-j=k-l	which is primary diagonal or
i+j=k+l	which is secondary diagonal

Equation for primary diagonal
i-j = k-l
this can be written as follows
j-l = i-k

Equation for Secondary diagonal
i+j = k+l
this can be written as follows
j-l = k-i

Therefore two queens lie on the same diagonal if and only if |j-l| = |i-k|.

The algorithm place(k,i) returns a Boolean value that is true if kth queen can be placed in column ‘i’. it tests both whether ‘i’ is distinct from all previous values x[i]..x[k-1] and whether there is no other queen on the same diagonal.

Its computing time is O(k-1).

The array x[1..n] is a global array. Let (x1,x2,x3,…xn) be the solution vector where xi is the column number on which the ith queen is placed. (i may be row number).

Using the algorithm place() a queen is placed in kth row , ith column and return true otherwise false.

Algorithm place(k,i)
{
for j:=1 to k-1 do
if ((x[j]=i) or (abs(x[j]-i) = abs(j-k)) then return false;

return true;
}

This algorithm is invoked by nqueens(1,n).

The algorithm for obtaining solution to n-queens problem is given below.

Algorithm nqueens(k,n)
{
for i:=1 to n do
{
if (place(k,i) then
{
X[k]:=i;
if (k=n) then write(x[i:n);
else
nqueens(k+1,n);
}
}
}

For an 8x8 chess board there are 64C8 possible ways to place 8 Queens using brute force approach. However by allowing only placements of queens on distinct rows and columns, we require the examination of at most 8! Tuples.

For a 4x4 chess board there are 16C4 possible ways to place
4 Queens using brute force approach. However by allowing only placements of queens on distinct rows and columns, we require the examination of at most 4! Tuples.

	Place first queen in the
	first
	row
	
	1
	2	3
	4

	in the first column.
	
	
	1
	1
	
	
	

	As it is the first queen
	it is
	
	2
	
	
	
	

	not under attack.
	
	
	3
	
	
	
	

	X[1]=1 (column value is assigned)
	4
	
	
	
	

X[1]=1

To place second queen in second row
Start with first column.	1
It is under attack	2
Second column also Under attack	3
Third column not under attack by other queens. 4
So we place queen in 3rd column. X[2]=31

2

-
-
-
-

1	2	3	4
	1
	
	
	

	-
	-
	2
	

	
	
	
	

	
	
	
	

X[2]=3

	To place third queen in third row
first col under attack
	
	
	1
	
	2	3	4
	

	second column under attack
	1
	
	
	
	
	

	third column under attack
	2
	
	
	
	
	

	fourth column under attack
	3
	
	
	
	
	

	not possible to place queen in third row
	4
	
	
	
	
	

	because placement of previous queens is not correct.So backtrack to previous row
and move the queen to another possible place and continue.
	
	
	
	
	
	

	
	
	
	1
	
	2	3	4
	

	Go to second row
	1
	
	
	
	
	

	Move the queen to another col.
	2
	
	
	
	
	

	Another possibility is column 4.
	3
	
	
	
	
	

	Move to col 4.
	4
	
	
	
	
	

	Now X[2]=4
	
	
	
	
	X[2]=4
	

Go to third row to place 3rd queen1

-
-
-
2

First col under attack	1
Second column not under attack by other	2
queens	3
So place the queen in 2nd col.	4
X[3]=2

Now to place 4th queen in 4th row First col under attack by other queen
Second col under attack by other queen Third col under attack by other queen
Fourth col under attack by other queen	1
Not possible to place the queen in 4th row	2
as there is a problem in the placement of	3
previous queens	4
Back track to previous placements
Goto 3rd row and try to move the queen to another place.
The other places are under attack go to 2nd row Already we checked all possibilities in 2nd row we backtrack to first row.

1	2	3	4
	1
	
	
	

	
	
	
	2

	-
	3
	
	

	
	
	
	

X[3]=2

1	2	3	4
	1
	
	
	

	
	
	
	2

	
	3
	
	

	-
	-
	-
	-

First queen is moved to 2nd column X[1]=2

Second queen in second row First col under attack Second column under attack Third col under attack
4th col not under attck So place queen in 4th col X[2]=4

To place third queen in third row First col not under attack
So place the queen in first col X[3]=1

To place 4th queen in 4th row first col under attack second col under attack third col not under attack
so place the 4th queen in 3rd col x[4]=3

1	2	3	4
1
1

2
3
4
X[1]=2

1	2	3	4
1
1

-
-
-
2

2
3
4
X[2]=4

1	2	3	4
1
1

2
3

2
3
4
X[3]=1

1	2	3	4
1
1

2
3

-
-
4

2
3
4
X[4]=3

All four queens are placed in the
4x4 chess board without attacking each other.
In the same way it is possible to place all 8 queens in an 8x8 chess board without attacking each other.
[image:]

Figure shows the part of the solution space tree that is generated. The tree generated as per the above processing. Nodes are numbered in the order in which they are generated. A node that gets killed as a result of backtracking has a B under it.

Tracing of the algorithm to place 4 queens on a 4x4 cross board such that no two queens attack each other.

nqueens(k,n)	place(k,i)
nqueens(1,4)	place(1,1) returns True so x[1]=1 nqueens(2,4)	place(2,1) returns False
place(2,2) returns False place(2,3) returns True so X[2]=3

nqueens(3,4) place(3,1) returns False
place(3,1) returns False place(3,1) returns False place(3,1) returns False
Backtracking nqueens(2,4) place(2,4) returns True so X[2]=4
nqueens(3,4) place(3,1) returns False
place(3,2) returns True so X[3]=2 nqueens(4,4) place(4,1) returns False
place(4,2) returns False place(4,3) returns False place(4,4) returns False
Backtracking nqueens(1,4) place(1,2) returns True so x[1]=2

nqueens(2,4)	place(2,1) returns False
place(2,2) returns False place(2,3) returns False place(2,4) returns True so X[2]=4
nqueens(3,4)	place(3,1) returns True so X[3]=1 nqueens(4,4)	place(4,1) returns False
place(2,2) returns False
place(2,3) returns True so X[4]=3

The solution vector for a 4x4 cross board to place 4 non attacking queens is
x[1]=2
x[2]=4
x[3]=1
x[4]=3

2) GRAPH COLORING

Let G be a graph and m be a given positive integer. We want to discover whether the node of G can be colored in such a way that no two adjacent nodes have the same color yet only m colors are used.

This is termed the m-colorability decision problem. Note that if d is the degree of the given graph, then it can be colored with d+1 colors. The m-colorability optimization problem asks for the smallest integer m for which the graph G can be colored. The integer is referred to as the chromatic number of the graph.

[image:]For example the following graph can be colored with three colors 1, 2 and 3. The color of each node is indicated next to it. It can also be seen that thee colors are needed to color this graph and hence this graph’s chromatic number is 3.

State space tree for coloring a graph containing 3 nodes using 3 colors
[image:]

Fig)State space tree for mColoring when n=3 and m=3

The algorithm mcoloring was formed using the recursive backtracking schema. The graph is represented by its Boolean adjacency matrix G[1:n,1:n]. All assignments of 1,2,…m to the vertices of the graph such that adjacent vertices are assigned distinct integers are printed. K is the index of the next vertex to color.

Algorithm mcoloring(k)
{
repeat
{
nextvalue(k);
if (x[k] = 0) then return; if (k=n) then
write(x[1:n]); else
mcoloring(k+1);
}until(false);
}

No of vertices= n No of colors= m
Solution vector = X[1], X[2], X[3]	X[n]
The values of solution vector may belongs to {0,1,2,3..m} The following Algorithm is used to generate next color.
Assume that X[1],..x[k-1] have been assigned integer values in the range [1,m] such that adjacent vertices have distinct integers.

A value for x[k] is determined in the range [0,m].

X[k] is assigned the next highest numbered color while maintaining distinctness from the adjacent vertices of vertex k. if no such color exists, the x[k]=0.

Algorithm nextvalue(k)
{
Repeat
{
X[k]=(x[k]+1)mod(m+1);	// next highest color if (x[k]=0) then
return;	//all colors have been used for j:=1 to n do
{
if ((G[k,j]!=0) and (x[k]=x[j])) then break;
//g[k,j] an edge and
//vertices k and j have same color
}
if (j=n+1) then return;
}until (false);
}

[image:]Adjacency Matrix G 1	2	3	4
10
1
0
1
1
0
1
0
0
1
0
1
1
0
1
0

2
3
4

Assume that n=4 and m=3 X[1]=0,x[2]=0,x[3]=0,x[4]=0
If we call the algorithm mcoloring(k)

mcoloring(1)	i.e. k=1 nextvalue(1)
k=1
x[1]=(x[1]+1) mod (m+1)
x[1]= 0+1 mod 4 x[1]=1

G[k,j]!=0 and x[k]=x[j]
j=1 G[1,1] false and true = false j=2 G[1,2] true and false = false j=3 G[1,3] false and false = false j=4 G[1,4] true and false = false

[image:]x[1]=1 ,x[2]=0,x[3]=0,x[4]=0

mcoloring(2)	i.e. k=2 nextvalue(2)
k=2
x[2]=(x[2]+1) mod (m+1)
x[2]= 0+1 mod 4 x[2]=1
G[k,j]!=0 and x[k]=x[j]
j=1 G[2,1]		True	and	True = True	break G[2,1] is an edge and
adjacent vertices have same color

x[2]=(x[2]+1) mod (m+1)
x[2]=(1+1) mod 4=2 mod 4 x[2]=2

G[k,j]!=0 and x[k]=x[j]
j=1 G[2,1] True and False = False j=2 G[2,2] False and True = False j=3 G[2,3] True and False = False j=4 G[2,4] False and False = False

x[1]=1 ,x[2]=2,x[3]=0,x[4]=0

[image:]assume that the number mentioned outside the node belongs to color

	mcoloring(3) nextvalue(3) k=3
x[3]=(x[3]+1)
	i.e. k=3

mod (m+1)
	

	x[3]= 0+1 mod x[3]=1
	4
	

	
j=1 G[3,1]
	G[k,j]!=0 and False	and
	x[k]=x[j] True =
	
False

	j=2 G[3,2]
	True	and
	False =
	False

	j=3 G[3,3]
	False	and
	True =
	False

	j=4 G[3,4]
	True	and
	False =
	False

[image:]x[1]=1 ,x[2]=2,x[3]=1,x[4]=0.
mcoloring(4)	i.e. k=4 nextvalue(4)
k=4
x[4]=(x[4]+1) mod (m+1)
x[4]= 0+1 mod 4 x[4]=1
G[k,j]!=0 and x[k]=x[j]
j=1 G[4,1]	true	and	true = True	so break
adjacent vertices have same color

	x[4]=(x[4]+1)
	mod (m+1)
	
	
	

	x[4]= 1+1 mod
	4
	
	
	

	x[4]=2
	
	
	
	

	
	G[k,j]!=0
	and
	x[k]=x[j]
	

	j=1 G[4,1]
	True
	and
	False
	=
	False

	j=2 G[4,2]
	False
	and
	True
	=
	False

	j=3 G[4,3]
	True
	and
	False
	=
	False

	j=4 G[4,4]
	False
	and
	True
	=
	False

x[1]=1 ,x[2]=2,x[3]=1,x[4]=2
[image:]

[image:]

Dr.DSK
III CSE-- DAA
UNIT-VI
Backtracking
Page 16

HAMILTONIAN CYCLES

Let G=(V,E) be a connected graph with n vertices. A Hamiltonian cycle is a round trip path along n edges of G that visits every vertex once and returns to its starting position. In other words if a Hamiltonian cycle begins at
some vertex v1 G and the vertices of G are visited in
the order v1, v2,…vn+1 then the edges (vi,vi+1) are in E, 1<=i<=n, and the vi are distinct except for v1 and vn+1, which are equal.
[image:]
The	above	graph	contains	the	Hamiltonian	cycles 1,2,3,4,5,6,7,8,1
1,3,4,5,6,7,8,2,1
1,2,8,7,6,5,4,3,1

[image:]
The graph contains no Hamiltonian cycle.

To check whether there is a Hamiltonian cycle or not we may use backtracking method. The graph may be directed or undirected. Only distinct cycles are output.

The backtracking solution vector (X1,X2,X3,…Xn) is defined so that xi represents the ith visited vertex of the proposed cycle.

Now all we need to do is determine how to compute the set of possible vertices for xk if x1,..xk-1 have already been chosen. If k=1 then x1 can be any of the n vertices.

The algorithm nextvalue(k) which determines a possible next vertex for the proposed cycle.

Using nextvalue we can particularize the recursive backtracking schema to find all Hamiltonian cycles. This algorithm is started by first initializing the adjacency matrix G[1:n,1:n], then setting x[2:n] to 0 and x[1] to 1 and then executing Hamiltonian(2).

// x[1:k-1] is a path of k-1 distinct vertices
// if x[k]=0 then no vertex has yet been assigned to x[k]
// after execution x[k] is assigned to the next highest
// numbered vertex which does not already appear in
// x[1:k-1]. Otherwise x[k]=0.
// if k=n then in addition x[k] is connected to x[1].

Algorithm nextvalue(k)
{
Repeat
{
X[k]:=(x[k]+1)mod(n+1); if (x[k]=0) then
return;
if (G[x[k-1],x[k]]]!=0) then
{
For j:=1 to k-1 do
if (x[j]=x[k]) then break;
if (j=k) then
if((k<n) or ((k=n)and G[x[n],x[1]]!=0))then return;
}
}until (false);
}
Algorithm to generate next vertex.

The algorithm Hamiltonian() uses the recursive formulation of backtracking to find all the Hamiltonian cycles of a graph. The graph is stored as an adjacency matrix G[1:n,1:n]. All cycles begin at node 1.

Algorithm Hamiltonian(k)
{
Repeat
{
nextvalue(k);
if (x[k]=0) then return;
if (k=n) then write (x[1:n]); else
Hamiltonian(k+1);
}until(false);
}

[image:]Algorithm to find all Hamiltonian cycles. Example)

No of vertices n=8
Adjacency matrix G	Solution vertex 1 2 3 4 5 6 7 8
1	X[1]0
1
1
0
0
0
1
1
1
0
1
0
0
0
0
1
1
1
0
1
0
1
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
1
0
1
0
1
0
1
0
0
0
0
1
0
1
1
1
0
0
0
0
1
0

1
0
0
0
0
0
0
0

2	X[2]
3	X[3]
4	X[4]
5	X[5]
6	X[6]
7	X[7]
8	X[8]

Algorithm starts with vertex 1 as initial vertex. Solution vertex must contain a series of vertices in the cycle.
X[1:n] i.e. x[1:8]
X[1]=1
and x[2:8]=0
we will add one by one vertices to the solution vector.

Hamiltonian(2)	k=2 Nextvalue(2)	k=2
X[2]=(x[2]+1) mod (8+1)=(0+1)mod 9 = 1
Is there an edge between k and k-1 G[x[k-1],x[k]]!=0
G[1,1] no edge False X[2]=(x[2]+1) mod (8+1)
= (1+1) mod 9
= 2

If (G[x[k-1],x[k]]!=0)
G[1,2] edge True

Are there duplicate vertices in the path J=1 is x[j]=x[k]
is x[1]=x[2] no false

Solution vector

X[1]1
2
0
0
0
0
0
0

X[2]
X[3]
X[4]
X[5]
X[6]
X[7]
X[8]

k < n return still we need to add vertices

Hamiltonian(3)	k=3 Nextvalue(3)	k=3
X[3]=(x[3]+1) mod (8+1)=(0+1)mod 9 = 1 X[3]=1
Is there an edge between k and k-1

If (G[x[k-1],x[k]]!=0)
G[2,1] edge True

Are there duplicate vertices in the path J=1 is x[j]=x[k]
is x[1]=x[3]
1=1	True	break

X[3]=(x[3]+1) mod (8+1)
X[3]=(1+1)mod 9
= 2

If (G[x[k-1],x[k]]!=0)
G[2,2] edge False

X[3]=(x[3]+1) mod (8+1)
X[3]=(2+1)mod 9
= 3

If (G[x[k-1],x[k]]!=0)
G[2,3] edge True

J=1	is x[j]=x[k]
Is 1=2 no false J=2	is 2=3 no false

as k < n return still we need to add vertices

Hamiltonian(4) k=4 Nextvalue(4)	k=4

X[4]=(x[4]+1) mod (8+1)
= (0+1)mod 9 = 1 X[4]=1
Is there an edge between k and k-1

If (G[x[k-1],x[k]]!=0)
G[3,1] edge True

Are there duplicate vertices in the path J=1 is x[j]=x[k]
is x[1]=x[4]
1=1	True	break

Solution vector

X[1]1
2
3
0
0
0
0
0

X[2]
X[3]
X[4]
X[5]
X[6]
X[7]
X[8]

X[4]=(x[4]+1) mod (8+1)
X[4]= 2

If (G[x[k-1],x[k]]!=0)
G[3,2] edge True

Are there duplicate vertices in the path J=1 is x[j]=x[k]
is x[1]=x[4]
1=2	False

J=2 is x[j]=x[k] is x[2]=x[4]
2=2	True Break

X[4]=(x[4]+1) mod (8+1) X[4]=3

If (G[x[k-1],x[k]]!=0)
G[3,3] edge False

X[4]=(x[4]+1) mod (8+1) X[4]=4

If (G[x[k-1],x[k]]!=0)
G[3,4] edge True

J=1 is x[j]=x[k]
Is 1=4 no false J=2 is 2=4 no false J=3 is 3=4 no false

Solution vector

X[1]1
2
3
4
0
0
0
0

X[2]
X[3]
X[4]
X[5]
X[6]
X[7]
X[8]

as k < n return still we need to add vertices

Hamiltonian(5) k=5 Nextvalue(5)	k=5

X[5]=(x[5]+1) mod (8+1)
= (0+1)mod 9 = 1 X[5]=1
Is there an edge between k and k-1

If (G[x[k-1],x[k]]!=0)
G[4,1] no edge False

X[5]=(x[5]+1) mod (8+1)
= (1+1)mod 9 = 2

If (G[x[k-1],x[k]]!=0)
G[4,2] no edge False X[5]=(x[5]+1) mod (8+1)

= (3+1)mod 9 = 3 If (G[x[k-1],x[k]]!=0)
G[4,3] edge True

Are there duplicate vertices in the path J=1 is x[j]=x[k]
is x[1]=x[5]
1=3	False J=2 is x[j]=x[k]
is x[2]=x[5]
2=3	False J=3 is x[j]=x[k]
is x[3]=x[5]
3=3	True duplicate found break

X[5]=(x[5]+1) mod (8+1)
X[5]= 5

If (G[x[k-1],x[k]]!=0)
G[4,5] edge True

Are there duplicate vertices in the path J=1 is x[j]=x[k]
is x[1]=x[5]
1=5	False

J=2 is x[j]=x[k] is x[2]=x[5]
2=5	False

J=3 is x[j]=x[k] is x[3]=x[5]
3=5	False

J=4 is x[j]=x[k] is x[4]=x[5]
4=5	False

Solution vector

X[1]1
2
3
4
5
0
0
0

X[2]
X[3]
X[4]
X[5]
X[6]
X[7]
X[8]

as k < n return still we need to add vertices

Hamiltonian(6) k=6 Nextvalue(6)	k=6

The solution vector for hamiltonian cycles 1,2,3,4,5,6,7,8,1
1,8,2,3,4,5,6,7,1
1,3,4,5,6,7,8,2,1

SUM OF SUBSETS

Suppose we are given n distinct positive numbers(usually called weights) and we desire to find all combinations of these numbers whose sum are m.

This is called the sum of subsets problem.

Ex1) given positive numbers Wi, 1<=i<=n, and m, this problem calls for finding all subsets of wi whose sums are m. For example, if n=4, (w1,w2,w3,w4)=(7,11,13,24) and m=31, then the desired subsets are (7,11,13) and (7,24).

Rather than representing the solution vector by wi which sum to m, we could represent the solution vector by giving the indices of these wi.

Now the two solutions are described by the vectors (1,2,3) and (1,4).

In general all solution subset is represented by n-tuple (X1,X2,X3,…Xn) such that Xi {0,1},1<=i<=n. The Xi is 0 if wi is not chosen and xi=1 if wi is chosen. The solutions
to the above instances are (1,1,1,0) and (1,0,0,1). This formulation expresses all solutions using a fixed sized tuple.

The sum of sub set is based on fixed size tuple. Let us draw a tree structure for fixed tuple size formulation.

All paths from root to a leaf node define a solution space. The left subtree of the root defines all subsets containing W1 and the right subtree defines all subsets not containing W1 and so on.

Step 1)Start with an empty set
Step 2)Add next element in the list to the sub set
Step 3)If the subset is having sum = m then stop with that sub set as solution.
Step 4)If the sub set is not feasible or if we have reached the end of the set then backtrack through the subset until we find the most suitable value.
Step 5)if the subset is feasible then repeat step 2
Step 6)if we have visited all elements without finding a suitable subset and if no backtracking is possible, then stop with no solution.

s – sum of all selected elements
k – denotes the index of chosen element
r – initially sum of all elements. After selection of some element from the set subtract the chosen value from r each time.
W(1:n) – represents set containing n elements. X[i]-solution vector 1<=i<=k

Algorithm sumofsubsets(s,k,r)
{
X[k]:=1;
if (s+w[k]=m) then write (x[1:k]); // subset found else
if (s+w[k]+w[k+1]<=m) then sumofsubsets(s+w[k],k+1,r-w[k]);
//generate right child and evaluate Bk. if ((s+r-w[k]>=m) and (s+w[k+1]<=m)) then
{
X[k]:=0;
sumofsubsets(s,k+1,r-w[k]);
}
}

Ex) n=4, (w1,w2,w3,w4)=(7,11,13,24) and m=31
[image:]Solution Vector=(x[1],x[2],x[3],x[4])

Portion of state space Tree Solution A = {1,1,1,0}
Solution B = {1,0,0,1}

Ex2) n=6, m=30 and w[1:6]={5,10,12,13,15,18}.
Portion of the state space tree generated by sum of subsets
[image:]
State space tree with solution

The rectangular nodes list the values of s,k and r. Circular nodes represent points at which subsets with sums m are printed out.

Solution A = (1,1,0,0,1) Solution B = (1,0,1,1) Solution C = (0,0,1,0,0,1)

Note that the tree contains only 23 rectangular nodes. The full space tree for n=6 contains 26-1=63 nodes from which calls could be made.

Important questions

1) Describe problem state, solution state and answer state with examples.
2) Write the control abstraction of backtracking 3)Explain the applications of backtracking 4)Describe 4-queen problem using backtracking
5) Write an algorithm of finding all m-colorings of a graph
6) Draw the state space tree for m-coloring graph using suitable graph
7) Apply backtracking to find Hamiltonian cycle in the following graph as shown in the figure.
[image:]
8) Write backtracking algorithm for 8-queens problem

[image:][image:]CMR ENGINEERING COLLEGE
[image:]Accredited by NBA,Affililated to JNTU,Hyderabad
 Kandlakoya(v), Medchal Road,Hyderabad-501401

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
Academic Year – 2018-2019

	S.No
	Roll No.
	Name of the Student
	Grade

	1
	178R1A05C1
	ANUMULA SUSHMITHA
	Excellent

	2
	178R1A05C2
	AELLA ABHISHEK REDDY
	Good

	3
	178R1A05C3
	ALISHETTY PRAVALIKA
	Excellent

	4
	178R1A05C6
	ANEGONDE VENKATA SAI PRASANTH
	Satisfaction

	5
	178R1A05C7
	ANUMALA ROHITH REDDY
	Excellent

	6
	178R1A05C9
	BATHINI LAXMAN
	Excellent

	7
	178R1A05D3
	GURRAMPALLY RAHUL YADAV
	Excellent

	8
	178R1A05D6
	GIMKALA SAMYUKTHA
	Satisfaction

	9
	178R1A05D8
	GOLIPALLY HARSHITHA REDDY
	Excellent

	10
	178R1A05E0
	IPPILI LAKSH KIRAN
	Excellent

	11
	178R1A05E1
	KOTHAPA LAKSHMI PRIYA
	Excellent

	12
	178R1A05E2
	KALAKONDA SRI VIDYA
	Satisfaction

	13
	178R1A05E3
	KASARLA CHANDANA
	Good

	14
	178R1A05E4
	KASHA SUMANTH
	Good

	15
	178R1A05E6
	KOLUGURI RUKMINI REDDY
	Good

	16
	178R1A05E8
	L K LAVANYA
	Good

	17
	178R1A05F1
	MOTATI SRUJANA
	Satisfaction

	18
	178R1A05F2
	MADIVALA RENUKA
	Excellent

	19
	178R1A05F4
	MATTAPARTHI SAI KUMAR
	Excellent

	20
	178R1A05F5
	MUSKULA MEGHANA
	Good

	21
	178R1A05F8
	NERETY NEERAJA
	Good

	22
	178R1A05F9
	NILAM SURAJ
	Excellent

	23
	178R1A05G1
	NOMULA ANANDITHA
	Satisfaction

	24
	178R1A05G2
	NUNAVATH PRASHANTH
	Excellent

	25
	178R1A05G4
	PASUPULETI SAI RAHUL
	Satisfaction

	26
	178R1A05G7
	PASUPULETI MAHIJA
	Excellent

	27
	178R1A05G9
	RAMANAGARI PRASHANTHI
	Excellent

	28
	178R1A05H0
	PODDATURI SAI ROSHAN
	Satisfaction

	29
	178R1A05H4
	TANKASALA SAI TEJA
	Good

	30
	178R1A05H9
	YEDULLA NAVEEN ARAVIND REDDY
	Good

	31
	178R1A05I0
	YERUVA RAVITEJA
	Satisfaction

	32
	178R1A05I4
	BEERAM VAMSHI
	Good

	33
	178R1A05I7
	BOLLAPELLI HARIKA
	Good

	34
	178R1A05I9
	DEVARAKONDA LAKSHMI KAMESHWARI
	Satisfaction

	35
	178R1A05J0
	DAMMU SOWJANYA
	

	36
	178R1A05J1
	YADAV DEEPALI
	Excellent

	37
	178R1A05J3
	G SAI SHEELA
	Excellent

	38
	178R1A05J5
	GAYATHRI PAREEK
	Satisfaction

	39
	178R1A05K4
	KANAKATLA SAGARIKA
	Excellent

	40
	178R1A05K5
	KARANI NETHRA NANDINI
	Excellent

	41
	178R1A05K7
	KEVA MAHESEKAR
	Excellent

	42
	178R1A05K9
	KONIKI VENKATA SAI NEEHARIKA
	Good

	43
	178R1A05L1
	MUCHARLA PRATHYUSHA REDDY
	Good

	44
	178R1A05L2
	MACHA NITHYA SANTHOSHINI
	Excellent

	45
	178R1A05L4
	MANCHANA MANISHA
	Satisfaction

	46
	178R1A05L6
	MEDARI RAGHU VARAN
	Good

	47
	178R1A05M1
	NADINDLA ASMITHA
	Good

	48
	178R1A05M2
	NALAMKULANGARA RAHUL KRISHNA
	Excellent

	49
	178R1A05M3
	NELAPATLA SARVANI
	Satisfaction

	50
	178R1A05M4
	PANDALA SHRAVANI
	Excellent

	51
	178R1A05M7
	RAHUL SAINI
	Excellent

	52
	178R1A05M8
	REVA MAHESEKAR
	Excellent

	53
	178R1A05M9
	S NIKITHA REDDY
	Satisfaction

	54
	178R1A05N0
	SAMOD VIJAYA KUMAR REDDY
	Excellent

	55
	178R1A05N3
	SOKKAM NAGARANI
	Good

	56
	178R1A05N5
	VAIDYAM VIKRAM KUMAR
	Excellent

	57
	178R1A05N6
	YAMJALA SUPRIYA
	Satisfaction

	58
	178R1A05N7
	YESUGARI ARAVIND
	Excellent

	59
	188R5A0512
	I SAI KUMAR
	Excellent

	60
	17601A0555
	NAVAPET TEJASWINI
	Good

	61
	17601A0574
	ADURI SRILEKHA
	Satisfaction

	62
	17601A0577
	TIGULLA SNEHA
	Excellent

The following rubric used for the presentation.

	Evaluation criteria
	Excellent
5.0 to >3.0 pts
	Good
3.0 to >2.0 pts
	Satisfaction
2.0 to >1.0 pts

	Objectives
	Presented objectives.
	clear
	Presented that relevant concepts.
	objectives somewhat to the
	Presented objectives.
	wrong

	Constructive Idea
	Excellent idea with evidence and relevant content to demonstrate the problem.
	Little relevant content to demonstrate the problem.
	No relevant content to demonstrate the problem.

	Solution
	Delivered the solution and	content
professionally	and answered the quires
	Delivered contents answered quires.
	the and
the	few
	Delivered	the contents and not answered the quires.

image4.jpeg

image5.jpeg

image6.jpeg

image7.jpeg

image8.jpeg

image9.jpeg

image10.jpeg

image11.jpeg

image12.jpeg

image13.jpeg

image14.jpeg

image15.jpeg

image16.jpeg

image17.png

image18.png

image19.png

image20.png

image21.png

image22.jpeg

image23.jpeg

image24.jpeg

image25.png

image26.png

image27.png

image1.jpeg

image2.jpeg

image3.jpeg

