
CMR Engineering College 1

DBMS Lab Manual

CMR ENGINEERING COLLEGE

(Approved by AICTE-New Delhi, Affiliated to JNTUH)

Kondlakoya(v), Medchal Road, Hyderabad -501401

Department Of Computer Science &

Engineering

DATABASE MANAGEMENT SYSTEMS LAB MANUAL

Class : II Year II Sem

Regulation : R16

A.Y. : 2017-2018

CMR Engineering College 2

DBMS Lab Manual

Roadway Travels

"Roadway Travels" is in business since 1997 with several buses connecting different places in
india. Its main office is located in Hydearabd.

The company wants to computerize its operations in the following areas:

 Reservation and Ticketing
 Cancellations

Reservation & Cancellation:

Reservations are directly handled by booking office. Reservations can be made 30 days in
advance and tickets issued to passenger. One Passenger/person can book many tickets (to his/her
family).

Cancellations are also directly handed at the bokking office.

In the process of computerization of Roadway Travels you have to design and develop a
Database which consists the data of Buses, Passengers, Tickets, and Reservation and cancellation
details. You should also develop query's usinf SQL to retrieve the data from database.

The above process involves many steps like

1. Analyzing the problem and identifying the Entities and Relationships,

2. E-R Model

3. Relational Model

4. Normalization

5. Creating the database

6. Querying.

Students are suppossed to work on these steps week wise and finally create a complete "Database
System" to Roadway Travels. Examples are given at every experiment for guidance to students.

CMR Engineering College 3

DBMS Lab Manual

Experiment 1: E-R Model for "Roadway Travels"

 "Roadway Travels"

AIM :To Study And identify the entity in road way travels database
system

 Analyze the problem carefully and come up with the entities in it. Identify what data has
to be persisted in the database. This contains the entities, attributes etc.

Entity:

An entity may be defined as a thing which is recognized as being capable of an
independent existence and which can be uniquely identified. An entity is an abstraction from the
complexities of some domain. When we speak of an entity we normally speak of some aspect of
the real world which can be distinguished from other aspects of the real world. Entities can be
thought of as nouns.

Examples:

A computer, an employee, a song, and a mathematical theorem.

The entities identified in “Roadway Travels” are :Bus, Ticket, Passenger

Relationship:

A relationship captures how two or more entities are related to one another. Relationships
can be thought of as verbs, linking two or more nouns.

Examples:

An “owns” relationship between a company and a computer, a supervises relationship
between an employee and a department, a performs relationship between an artist and a song, a
proved relationship between a mathematician and a theorem.

The relationships identified in “Roadway Travels” are:

1. Reservation
2. Cancellation

Attributes:

Entities and relationships can both have attributes.

Examples:

CMR Engineering College 4

DBMS Lab Manual

An employee entity might have a Social Security Number (SSN) attribute; the proved
relationship may have a date attribute.

The attributes identified for entities in “Roadway Travels” are:

1. Bus:
a. BUS NUMBER,
b. SOURCE,
c. DESTINATION.
d. NO OF DAYS AVAILBLE

2. Passenger:
a. PASSEBGER _ID
b. NAME,
c. AGE,
d. GENDER
e. ADDRESS

3. Ticket:
a. TICKET_ID
b. JOUTNEY_DATE
c. PNR NO
d. SOURCE
e. DESTINATION
f. BUS NO

The attributes identified for relationships in “Roadway Travels” are:

1. Reservation:
a. PNRNO
b. JOUTNEY_DATE
c. NUMBER_OF_SEATS

2. Cancellation:
a. PNR _NO
b. JOUTNEY_DATE
c. NUMBER_OF_SEATS
d.

Primary keys:

Bus NO. (Bus entity)

Passenger_id (passenger entity

Ticket_id (ticket entity).

E-R Diagrams:

CMR Engineering College 5

DBMS Lab Manual

Entity-relationship diagrams don't show single entities or single instances of relations.
Rather, they show entity sets and relationship sets.

Example:

A particular song is an entity. The collection of all songs in a database is an entity set.
The eaten relationship between a child and her lunch is a single relationship. The set of all such
child-lunch relationships in a database is a relationship set. In other words, a relationship set
corresponds to a relation in mathematics, while a relationship corresponds to a member of the
relation.

Entity sets are drawn as rectangles, relationship sets as diamonds. If an entity set participates in a
relationship set, they are connected with a line. Attributes are drawn as ovals and are connected
with a line to exactly one entity or relationship set.

An underlined name of an attribute indicates that it is a key: two different entities or relationships
with this attribute always have different values for this attribute.

Result: All the entities and relationships of database system are identified.

CMR Engineering College 6

DBMS Lab Manual

Experiment 2: Concept design with E-R Model for "Roadway
Travels"

AIM : To draw the E-R diagram for Roadway Travels

CMR Engineering College 7

DBMS Lab Manual

The E-R Diagram for “Roadway
travels”.

No. days available
Passen
ger_id

Address

PNR_No Source

Bus_no

Pasgr id

Ticket_id

Passenger_ID

Ticket_id

CMR Engineering College 8

DBMS Lab Manual

Experiment 3
 Relational Model "Roadway Travels" database

Aim : To perform the all the entities and relationships in tabular fashion

 Description :There are different ways of representing relationships as tables based on the
cardinality. Represent attributes as columns in table or as tables based on the requirement.
Different types of attributes based on your E-R model.

The relational models for the entities and relations are as follows:

Bus:
Bus_No Source Destination No of days available

Passenger:
P_ID NAME Age Gender Address Ticket_ID

Ticket:
Ticket_ID Journey_Date PNR_NO BUS_NO Source Destination

Reservation:
PNR_No Journey_Date No_of_seats

Cancellation:
PNR_No Journey_Date No_of_seats

Result:Relation model of database system is performed

CMR Engineering College 9

DBMS Lab Manual

Experiment 4
Normalization for database tables

 AIM: To perform the normalization in a database system

Description: Database Normalisation is a technique of organizing the data in the database.

Normalization is a systematic approach of decomposing tables to eliminate data redundancy

Normalization rule are divided into following normal form.

1. First Normal Form

2. Second Normal Form

3. Third Normal Form

4. BCNF

5. Fourth Normal Form

6. Fifth Normal Form

To remove the redundancy from the following table

Passenger:
P_ID NAME Age Gender Address Ticket_ID

CMR Engineering College 10

DBMS Lab Manual

After the normalization of above table

Passenger:
P_ID NAME Age Gender Address

Pastic
P_ID Ticket_ID

Result: Normalization is performed in database system.

CMR Engineering College 11

DBMS Lab Manual

Experiment 5

Installation of MySQL
Creation & Alteration of tables using DDL commands

Aim:perform the installation of MYSQL and execute and manipulate all the DDL
commands in a database system.

Installation of MySQL. In this week you will learn creating databases, creating tables,
altering the databases, dropping tables and databases if not required. You will also try truncate,
rename commands etc.

Installation of MYSQL.

Step 1: Downloading and Starting the MySQL Installation Wizard.

The process for starting the wizard depends on the contents of the installation package you
download. If there is a setup.exe file present, double-click it to start the installation process.

Step 2: Choosing an Installation Type.
There are three installation types available: Typical, Complete, and Custom.

CMR Engineering College 12

DBMS Lab Manual

The Typical installation type installs the MySQL server, the mysql command-line client, and the
command-line utilities. The command-
line clients and utilities include mysqldump, myisamchk, and several other tools to help you
manage the MySQL server.

The Complete installation type installs all components included in the installation package. The
full installation package includes components
such as the embedded server library, the benchmark suite, support scripts, and documentation.

The Custom installation type gives you complete control over which packages you wish to
install and the installation path that is used.

If you choose the Typical or Complete installation types and click the NEXT button,

Step 3: The Custom Installation Dialog.

If you wish to change the installation path or the specific components that are installed by the
MySQL Installation Wizard, choose the Custom installation type.

CMR Engineering College 13

DBMS Lab Manual

A tree view on the left side of the custom install dialog lists all available components.
Components that are not installed have a red X icon; components that are installed have a gray
icon. To change whether a component is installed, click that component's icon and choose a new
option from the drop-down list that appears.

Step 4: The Confirmation Dialog.

Once you choose an installation type and optionally choose your installation components, you
advance to the confirmation dialog. Your installation type and installation path are displayed for
you to review.

CMR Engineering College 14

DBMS Lab Manual

To install MySQL if you are satisfied with your settings, click the INSTALL button. To change
your settings, click the BACK button. To exit the MySQL Installation Wizard without installing
MySQL, click the CANCEL button.

And MySQL will be installed into your system automatically.

DESCRIPTION: A database system provides a data definition language (DDL) to
specify the database schema. DDL also updates a special set of tables called the
data dictionary or data directory.

Definitions:

1. create: ‘create’ command is used to define an SQL relation.
 Syntax: create table table-name(field-name-1 data-type,
 field-name-2 data-type,
 …….
 ……
 field-name-n data-type);

2. desc: ‘desc’ command is used to read the created relation.
 Syntax: desc table-name;

3. a) alter add: ‘alter add’ command adds the attributes to an existing relation.

CMR Engineering College 15

DBMS Lab Manual

 Syntax: alter table table-name add(field-name-1 data-type,……..);
b) alter modify: ‘alter modify’ command modifies the data types for the
existing attributes.
 Syntax: alter table table-name modify(field-name data-type);

4. truncate: ‘truncate’ command truncates the table i.e. all the rows will be

deleted in the table.
 Syntax: truncate table table-name;

5. drop: the ‘drop’ command deletes all information about the relation
from the database i.e. it deletes the schema of the relation.
 Syntax: drop table table-name;

Creating tables:

Create table with following schma

1. Bus:
i. BUS NUMBER,

ii. SOURCE,
iii. DESTINATION.
iv. NO OF DAYS AVAILBLE

2. Passenger:

i. PASSEBGER _ID
ii. NAME,

iii. AGE,
iv. GENDER
v. ADDRESS

3. Ticket:
i. TICKET_ID

ii. JOUTNEY_DATE
iii. PNR NO
iv. SOURCE
v. DESTINATION

vi. BUS NO

4. Pastic
i. PID,

ii. TID

CMR Engineering College 16

DBMS Lab Manual

The attributes identified for relationships in “Roadway Travels” are:

5. Reservation:
i. PNRNO

ii. JOUTNEY_DATE
iii. NUMBER_OF_SEATS

6. Cancellation:

a. PNR _NO
b. JOUTNEY_DATE
c. NUMBER_OF_SEATS

Primary keys:

BUS :Bus NO.

PASSENGER:Passenger_id

TICKET :Ticket_id

BUS Table:

SQL> CREATE TABLE BUS
 (BUS_NO VARCHAR2(10),
 SOURCE VARCHAR2(20),
 DESTINATION VARCHAR2(20),
 PRIMARY KEY (BUS_NO)
);

SQL> Table created.

SQL>desc BUS;

Passenger table:

SQL> CREATE TABLE PASSENGER (PID VARCHAR(10) PRIMARY KEY,

NAME VARCHAR(20) NOT NULL,
AGE INTEGER,
GENDER VARCHAR(5),
ADDRESS VARCHAR(20));

TABLE CREATED.

CMR Engineering College 17

DBMS Lab Manual

SQL> desc PASSENGER;

Reservation Table:

SQL> CREATE TABLE RESERVATION (PNRNO INTEGER,

JOURNEYDATE DATE,
NOOFSEATS NUMBER)

 SQL> TABLE CREATED.

SQL>DESC RESERVATION;

Cancellation Table:

SQL> CREATE TABLE CANCELLATION

PNRNO INTEGER,
JOURNEYDATE DATE,
NOOFSEATS NUMBER)

SQL> TABLE CREATED.

SQL>DESC CANCELLATION;

Ticket Table:

SQL> CREATE TABLE TICKET(TID NUMBER(15) PRIMARY KEY,

JOURNDATE TIMESTAMP,
SOURCE CHAR(10),
DESTINATION CHAR(8),
BUSNO VARCHAR2(10),
PNRNO NUMBER(5),
FOREIGN KEY(BUSNO) REFERENCES BUS1540(BUSNO));

SQL> TABLE CREATED.

SQL>desc TICKET;

To truncate a table:

Syntax is : truncate table table_name;

Ex: SQL> truncate table bus;
 SQL> Table Truncated.

To DROP a table:

Syntax is: drop table table_name;

CMR Engineering College 18

DBMS Lab Manual

Ex: SQL> Drop table bus;
 SQL> Table Dropped.

Result: installation of MYSQL and roadway travels tables are created is
performed

CMR Engineering College 19

DBMS Lab Manual

Experiment 6

Inserting and modifying the data using DML commands

DML COMMANDS

AIM: To study and execute all the DML commands in a database system.

DESCRIPTION: A data manipulating language(DML) is a language that enables users to

access or manipulate data as organized by the appropriate data model. They am basically two

types:

1. Procedural DML.

2. Declarative DML.

The DML component of the SQL language is non-procedural. The DML commands in a

database system are

DML commands are used for managing the data within schema objects. Some examples are.
I. SELECT- retrieve data from the database.
II. INSERT- insert data into a table.
III. Updates existing data within a table.

DELETE- delete all records from a table, the space for the records remain

Definitions:

1. insert : 'insert' command is used to load the data into the relation

 Syntax: insert into table-name(field-names) values (field-values);

2. delete: 'delete' command deletes only tuples .

Syntax: delete from table-name;

3. update: 'update' command is used to update the existing data in the relation

 Syntax: update table-name set field-name—value where condition;

INSERT Command:

SQL> create table bus540(busno varchar2(10),source varchar2(20),
destination varchar2(20));

Table created.

CMR Engineering College 20

DBMS Lab Manual

SQL> insert into bus540 values('&busno','&source','&des');
Enter value for busno: 1234
Enter value for source: hyd
Enter value for des: guntur
old 1: insert into bus540 values('&busno','&source','&des')
new 1: insert into bus540 values('1234','hyd','guntur')

1 row created.

SQL> /
Enter value for busno: 5678
Enter value for source: guntur
Enter value for des: vizaq
old 1: insert into bus540 values('&busno','&source','&des')
new 1: insert into bus540 values('5678','guntur','vizaq')

1 row created.

SQL> /
Enter value for busno: 1345
Enter value for source: vinukonda
Enter value for des: guntur
old 1: insert into bus540 values('&busno','&source','&des')
new 1: insert into bus540 values('1345','vinukonda','guntur')

1 row created.

 SQL> update bus540 set des='kcp' where busno='1345';

1 row updated.

SQL> select * from bus540;

BUSNO SOURCE DES
-------------------- ---------- --------------------
1234 hyd guntur
5678
 vizaq
1345 vinukonda kcp

SQL> create table passenger1540(pid varchar(10) primary key,name varchar(20) not null,
age integer,gender varchar(5),address varchar(20));

Table created.

CMR Engineering College 21

DBMS Lab Manual

SQL> insert into passenger1540 values('&pid','&name',&age,'&gender','&address');
Enter value for pid: 111
Enter value for name: ruchin
Enter value for age: 10
Enter value for gender: m
Enter value for address: hyderabad
old 1: insert into passenger540 values('&pid','&name',&age,'&gender','&address')
new 1: insert into passenger540 values('111','ruchin',10,'m','hyderabad')

1 row created.

SQL> /
Enter value for pid: 222
Enter value for name: sunay
Enter value for age: 11
Enter value for gender: m
Enter value for address: kcp
old 1: insert into passenger540 values('&pid','&name',&age,'&gender','&address')
new 1: insert into passenger540 values('222','sunay',11,'m','kcp')

1 row created.

SQL> /
Enter value for pid: 333
Enter value for name: nari
Enter value for age: 27
Enter value for gender: m
Enter value for address: guntur
old 1: insert into passenger540 values('&pid','&name',&age,'&gender','&address')
new 1: insert into passenger540 values('333','nari',27,'m','guntur')

1 row created.

SQL> select * from passenger540;

PID NAME AGE GENDE ADDRESS
---------- -------------------- ---------- ----- --------------------
111 ruchin 10 m hyderabad
222 sunay 11 m kcp
333 nari 27 m guntur

SQL> create table ticket1540(tid number(15) primary key,journdate timestamp,source
char(10),desti
nation char(8),busno varchar2(10),pnrno number(5),foreign key(busno) references
bus1540(busno));

Table created.

CMR Engineering College 22

DBMS Lab Manual

SQL> insert into ticket1540 values(&tid,'&journdate','&source','&destination','&busno',&pnrno);
Enter value for tid: 112233
Enter value for journdate: 15-mar-13 10:30:54
Enter value for source: hyd
Enter value for destination: chennai
Enter value for busno: 5678
Enter value for pnrno: 112
old 1: insert into ticket1540 values(&tid,'&journdate','&source','&destination','&busno',&pnrno
)
new 1: insert into ticket1540 values(112233,'15-mar-13 10:30:54','hyd','chennai','5678',112)

1 row created.

SQL> /
Enter value for tid: 223344
Enter value for journdate: 28-jul-13 9:30:33pm
Enter value for source: tirupathi
Enter value for destination: guntur
Enter value for busno: 1345
Enter value for pnrno: 114
old 1: insert into ticket1540 values(&tid,'&journdate','&source','&destination','&busno',&pnrno
)
new 1: insert into ticket1540 values(223344,'28-jul-13 9:30:33pm','tirupathi','guntur','1345',1
14)

1 row created.

SQL> /
Enter value for tid: 334455
Enter value for journdate: 29-mar-13 9:20:22pm
Enter value for source: manglore
Enter value for destination: hyd
Enter value for busno: 1234
Enter value for pnrno: 115
old 1: insert into ticket1540 values(&tid,'&journdate','&source','&destination','&busno',&pnrno
)
new 1: insert into ticket1540 values(334455,'29-mar-13 9:20:22pm','manglore','hyd','1234',115)

1 row created.

SQL> select * from ticket1540;

 TID JOURNDATE SOURCE DESTINAT BUSNO
PNRNO

 112233 15-MAR-13 10.30.54.000000 AM hyd chennai 5678 112

CMR Engineering College 23

DBMS Lab Manual

 223344 28-JUL-13 09.30.33.000000 PM tirupathi guntur 1345
114

 334455 29-MAR-13 09.20.22.000000 PM manglore hyd 1234
115

SQL> create table pastic11(tid integer,pid varchar(10),primary key(tid,pid),
foreign key(tid) references ticket540,foreign key(pid) references
passenger540);

Table created.

SQL> insert into pastic11 values(112233,'111');

1 row created.

SQL> insert into pastic11 values(1223344,'222');

1 row created.

SQL> insert into pastic11 values(223344,'333');

1 row created.
SQL> select * from pastic;

 TID PID
---------- ----------
 112233 111
 1223344 222
 223344 333

SQL> create table reservation540(pnrno integer,journeydate date,noofseats number);

Table created.

SQL> insert into reservation540 values(&pnrno,'&date',&noofseats);
Enter value for pnrno: 123
Enter value for date: 15-mar-2013
Enter value for noofseats: 3
old 1: insert into reservation540 values(&pnrno,'&date',&noofseats)
new 1: insert into reservation540 values(123,'15-mar-2013',3)

1 row created.

SQL> /
Enter value for pnrno: 124

CMR Engineering College 24

DBMS Lab Manual

Enter value for date: 28-jul-2013
Enter value for noofseats: 2
old 1: insert into reservation540 values(&pnrno,'&date',&noofseats)
new 1: insert into reservation540 values(124,'28-jul-2013',2)

1 row created.

SQL> /
Enter value for pnrno: 111
Enter value for date: 29-mar-2013
Enter value for noofseats: 3
old 1: insert into reservation540 values(&pnrno,'&date',&noofseats)
new 1: insert into reservation540 values(111,'29-mar-2013',3)

1 row created.

SQL> select * from reservation540;

 PNRNO JOURNEYDA NOOFSEATS
 ---------- --------- ----------
 123 15-MAR-13 3
 124 28-JUL-13 2
 111 29-MAR-13 3

SQL> create table cance540(pnrno integer,journeydate date,noofseats number)

Table created.

SQL>insert into cance540(&pnrno,'&date','&noofseats');
Enter value for pnrno: 123
Enter value for date: 09-apr-2013
Enter value for noofseats: 2
old 1: insert into cance540 values(&pnrno,'&date',&noofseats)
new 1: insert into cance540 values(123,'09-apr-2013',2)

1 row created.

SQL> /
Enter value for pnrno: 111
Enter value for date: 21-dec-3013
Enter value for noofseats: 4
old 1: insert into cance540 values(&pnrno,'&date',&noofseats)
new 1: insert into cance540 values(111,'21-dec-3013',4)

1 row created.

SQL> select * from cance540;

CMR Engineering College 25

DBMS Lab Manual

 PNRNO JOURNEYDA NOOFSEATS
 ---------- --------- ----------
 123 09-APR-13 2
 111 21-DEC-13 4

SELECT Command:

Selecting values from the bus table.

SQL> SELECT * FROM BUS; (Selects all the attributes and display)

UPDATE Command:

SQL> UPDATE BUS SET bus_no=’boo4’ WHERE bus_no=’b003’;

Delete Command:

SQL> DELETE FROM BUS; (To delete entire rows from a table)
SQL> DELETE * FROM BUS WHERE bus_no=’boo1’; (To delete an individual row)

Result: Inserting of values into roadway travels tables are performed using with
DML commands

CMR Engineering College 26

DBMS Lab Manual

Experiment 7

 Queries using EXISTS, NOT EXIST, UNION, INTERSECT SET OPERATIONS

AIM: To execute all the set operations in a SQL language.

Description: If the answer to a query is a multiset of rows then we use the set
operations. Set operations include:

1. Union
2. Intersect
3. Except

Definitions:

1. Union: RV S returns a relation instance containing all tuples that occur in
either relation instance R or relation instance S (or both).

2. Intersect: R Λ S returns a relation instance containing all tuples that occur

in both R and S.

3. Except: R-S returns a relation instance containing all tuples that occur in R
but not in S.

EXISTS Operator:

 The EXISTS sub query is used when we want to display all rows where we have a
matching column in both tables.

SQL> SELECT pnr_no,age FROM PASSENGER WHERE EXISTS(SELECT age FROM
TICKET WHERE age>22);

SQL> select name from passenger where exists (select * from ticket540 where tid='112233');

NAME
--
tarun
manu
deepak
shona

CMR Engineering College 27

DBMS Lab Manual

SQL> select name from passenger540 where exists (select * from ticket540 where tid='112233');

NAME

ruchin
sunay
nari

SQL> select name from passenger540 where exists (select name from ticket540
 where tid='112233');

NAME

ruchin
sunay
nari

NOT EXISTS Operator:

 The NOT EXISTS subquery is used to display cases where a selected column does not
appear in another table.

SQL> SELECT pnr_no,age FROM PASSENGER WHERE NOT EXISTS(SELECT age FROM
TICKET WHERE age>22);

CMR Engineering College 28

DBMS Lab Manual

SQL> (select name from passenger540 where address='hyderabad') minus (select name from
passenger
where address='guntur');

NAME

ruchin

SQL> (select name from passenger540 where address='kcp')minus (select name from
passenger540 whe
ddress='guntur');

NAME

UNION Operator:

 Combine the results of two SELECT statements into one result set, and then eliminates
and duplicate rows from that result set.

SQL> SELECT pnr_no FROM PASSENGER WHERE age>20 UNION SELECT pnr_no
FROM RESERVATION WHERE no_of_seats > 2;

SQL> (select *from passenger540 where address='hyderabad')union (select *from passenger540
 where dress='kcp');

PID NAME AGE GENDE ADDRESS
---------- -------------------- ---------- ----- --------------------
111 ruchin 10 m hyderabad

CMR Engineering College 29

DBMS Lab Manual

222 sunay 11 m kcp

SQL> (select * from passenger540) union (select *from passenger540);

PID NAME AGE GENDE ADDRESS
---------- -------------------- ---------- ----- --------------------
111 ruchin 10 m hyderabad
222 sunay 11 m kcp
333 nari 27 m guntur

SQL> (select * from passenger540) union all (select *from passenger540);

PID NAME AGE GENDE ADDRESS
---------- -------------------- ---------- ----- --------------------
111 ruchin 10 m hyderabad
222 sunay 11 m kcp
333 nari 27 m guntur
111 ruchin 10 m hyderabad
222 sunay 11 m kcp
333 nari 27 m guntur

6 rows selected.

SQL> (select pid,name from passenger540) union (select pid,name from passenger540);

PID NAME
---------- --------------------
111 ruchin
222 sunay
333 nari

SQL> (select pid,name from passenger540)union (select name,pid from passenger540);

PID NAME
-------------------- --------------------
111 ruchin
222 sunay
333 nari
nari 333
ruchin 111
sunay 222

6 rows selected.
INTERSECT Operator:

 Combine the results of two SELECT statements into one result set, and returns only those
rows that are returned by each of two statements.

CMR Engineering College 30

DBMS Lab Manual

SQL> >SELECT pnr_no FROM PASSENGER WHERE age>20 INTERSECT SELECT pnr_no
FROM RESERVATION WHERE no_of_seats > 2;

SQL> (select *from passenger540)intersect (select * from passenger540);

PID NAME AGE GENDE ADDRESS
---------- -------------------- ---------- ----- --------------------
111 ruchin 10 m hyderabad
222 sunay 11 m kcp
333 nari 27 m guntur

Result: All the set operation queries are performed

CMR Engineering College 31

DBMS Lab Manual

Experiment 8

Queries using set comparison operators using ANY, ALL, IN and along with nested
queries

AIM: To execute all the set comparison operations in a SQL language.

Description: If the answer to a query is a multiset of rows then we use the set
operations. Set comparison operations include:

i. Any
ii. ALL
iii. In

Definitions:

The ANY Operator:the any operator allows you to specify multiple values in a where clause
and select any value from that list

The All Operator:the all operator allows you to specify multiple values in a where clause and
select all value from that list

The IN Operator:the in operator allows you to specify multiple values in a where clause.

The BETWEEN Operator:The BETWEEN operator selects values within a range. The values
can be numbers, text, or dates.

 ANY Operator:

 Compares values to each value returned by sub query.

SQL> SELECT pnr_no,age FROM PASSENGER WHERE age>ANY(SELECT age FROM
TICKET WHERE age>22);

ALL Operator:

 Compare values to every value returned by sub query.

CMR Engineering College 32

DBMS Lab Manual

SQL> SELECT pnr_no,age FROM PASSENGER WHERE age>ALL(SELECT age FROM
TICKET WHERE age>22);

IN Operator:

 Equal to any member in the list.

SQL> SELECT pnr_no,age FROM PASSENGER WHERE age IN(SELECT age FROM
TICKET WHERE age>22);

BETWEEN Operator
SQL> SELECT name FROM PASSENGER WHERE age BETWEEN 30 AND 45;

1. Display unique pnr_no of all passengers.

SQL> SELECT DISTINCT pnr_no FROM PASSENGER;

CMR Engineering College 33

DBMS Lab Manual

2. Display all the names of male passengers.

SQL> SELECT name FROM PASSENGER WHERE sex = ’M’;

3. Display the ticket numbers and names of all passengers.

SQL> SELECT ticket_no, name FROM PASSENGER;

4. Display the source and destinations of all busses.

SQL> SELECT source, destination FROM BUS;

5. Find the ticket numbers of the passengers whose name starts with ‘A’ and ends with

‘H’.

SQL> SELECT ticket_no FROM PASSENGER WHERE name LIKE ‘A%H’;

6. Find the names of all the passengers whose age is between 30 and 45.

SQL> SELECT name FROM PASSENGER WHERE age BETWEEN 30 AND 45;

7. Display all the passengers names beginning with ‘A’.

SQL> SELECT name FROM PASSENGER WHERE name LIKE ‘A%’;

8. Display the sorted list of passenger’s names.

SQL> SELECT name FROM PASSENGER ORDER BY name ASC;

Result: All the set comparison operation queries are performed

CMR Engineering College 34

DBMS Lab Manual

Experiment 9

Queries using Aggregate functions (COUNT, SUM, AVG, MAX,and MIN) and Queries
using GROUP BY, HAVING and Creation and droping of VIEWS.

AIM: To execute all the group functions and To execute all the group by Having
clause and view in a SQL language.

Description: These can be applied on any column of a relation. Aggregate
functions include:

1.Avg
2.Min
3.Max
4.Sum
5.Count

Definitions:

1. Sum: The input to sum must be a collection of numbers and it gives sum of
those numbers.

 Syntax: select Sum (field-name) from table-name;

2. Min: It presents the minimum value among tuples of a given attribute.

 Syntax: select Min (field-name) from table-name;

3. Max: It presents the maximum value among tuples of a given attribute.

 Syntax: select Max (field-name) from table-name;

4. Avg: It gives the average of the numbers.

Syntax: select Avg (field-name) from table-name;

5. Count: It counts the number of tuples in the relation.

Syntax: select Count (Distinct field-name) from table-name;

CMR Engineering College 35

DBMS Lab Manual

COUNT: It returns the number of rows in the query.

SQL> SELECT COUNT(*) FROM PASSENGER;

SUM: It returns the sum value of column.

SQL> SELECT SUM(ticket_no) FROM PASSENGER;

AVG: It returns the average value of column.

SQL> SELECT AVG(age) FROM PASSENGER;

MAX: It returns the maximum value of column.

SQL> SELECT MAX(age) FROM PASSENGER;

MIN: It returns the minimum value of column.

SQL> SELECT AVG(age) FROM PASSENGER;

Description: To write queries using clauses such as GROUP BY, HAVING and creation of

VIEW, etc. and retrieving

information by joining tables.

Definitions:

GROUP BY CLAUSE: The GROUP BY statement is used in conjunction with the aggregate
functions to group the result-set by one or more columns.

SQL> SELECT name, AVG(age) FROM PASSENGER GROUP BY name;

HAVING CLAUSE: The HAVING clause was added to SQL because the WHERE keyword
could not be used with aggregate functions.

SQL> SQL> SELECT name, AVG(age) FROM PASSENGER GROUP BY name HAVING
AVG(age)>30;

Q1)WAQ to display infor pressent in reservation and cancellation tables using union operator

CMR Engineering College 36

DBMS Lab Manual

SQL> select pnrno from reservation540 union select pnrno from cance540;

 PNRNO

 111
 123
 124

Q)WAQ to find no of seats booked fro each pnrno using group by clause

SQL> select pnrno,sum(noofseats) from reservation540 group by pnrno;

 PNRNO NOOFSEATS
---------- --------------
 123 3
 124 2
 111 3

Q)WAQ to find no of pnrno's in a tableon which 123 pnr no is available using distinct

SQL> select count(distinct source)from bus540 where busno=1234;

COUNT(DISTINCTSOURCE)

 1

Q)WAQ to find distinct pnrno's that are present

SQL> select distinct pname from reservation540;

 PNRNO

 123
 124
 111

Q)WAQ to find total no of cancellation seats

SQL> select sum(noofseats) from cance540;

SUM(NOOFSEATS)

 6

CMR Engineering College 37

DBMS Lab Manual

A view is, in essence, a virtual table. It does not physically exist. Rather, it is created by a query
joining one or more tables.

Creating VIEWS:

SQL> CREATE VIEW PASSENGERVIEW AS SELECT ticket_no,name,ppno,sex FROM
PASSENGER;

SQL> VIEW CREATED.

SQL> SELECT * FROM PASSENGERVIEW;

Updating a View

SQL> CREATE OR REPLACE PASSENGERVIEW AS SELECT ticket_no,ppno,sex from
PASSENGER;

SQL> VIEW CREATED.

SQL> SELECT * FROM PASSENGERVIEW;

Dropping a View

SQL> DROP VIEW PASSENGERVIEW;

SQL> VIEW DROPPED.

Result: All the Aggregate functions and GROUP BY ,HAVING AND VIEW queries are
performed

CMR Engineering College 38

DBMS Lab Manual

CMR Engineering College 39

DBMS Lab Manual

Experiment 10

Creation of insert trigger, delete trigger, update trigger. Practice triggers using the
roadway travels database.

 Aim: To implement operations on relations using PL/SQL trigger

Definition: a trigger is a SQL procedure that initiates an action (i.e., fires an action)
when an event (INSERT, DELETE or UPDATE) occurs. Sincetriggers are event-driven
specialized procedures, they are stored in and managed by the DBMS.

SQL>CREATE OR REPLACE TRIGGER UPDATECHECK
BEFORE UPDATE ON PASSENGER
FOR EACH ROW
WHEN (NEW.TICKET_NO > 60)
BEGIN
 :NEW.TICKET_NO := :OLD.TICKET_NO;
 dbms_output.put_line('updcheck called');
END;
/

OUT PUT:

Result: A triggers in PL/SQL language are performed.

CMR Engineering College 40

DBMS Lab Manual

Experiment 11
Creation of stored procedure, Execution of procedure and modification of procedure.
Practice procedures using the database.

Aim: To implement Procedure on relations using PL/SQL

Definition: A procedure is a subprogram that performs a specific action.

CREATE OR REPLACE PROCEDURE VOTER_VERIFICATION(Age NUMBER)
 IS
 begin
 if age > 18 then
 dbms_output.put_line('Valid for Voting');
 Else
 dbms_output.put_line('Not valid for voting');
 END IF;
 ENd;

OUT PUT:

Result: A Procedure in PL/SQL language are performed.

CMR Engineering College 41

DBMS Lab Manual

Experiment 12

Declare a curser that defines a result set. Open the curser to establish a the result set. Fetch
the data into local variables as needed from the cursor, one row at a time. Close the cursor
when done.

Aim: To implement cursors on relations using PL/SQL

Definition: A cursor is a temporary work area created in the system memory when a SQL
statement is executed. A cursor contains information on a select statement and the rows of data
accessed by it.

SQL> CREATE OR REPLACE PROCEDURE DISPLAY_BUS_ROUTE(BID VARCHAR2)
 IS
 SRC VARCHAR2(10);
 DEST VARCHAR2(10);
 cursor c1 is select SOURCE,DESTINATION FROM BUS WHERE BUS_NO LIKE BID;
 begin
 open c1;
 fetch c1 into SRC,DEST;
 dbms_output.put_line('BUS_NO:'||BID);
 dbms_output.put_line('SRC:'||SRC);
 dbms_output.put_line('DEST:'||DEST);
 END;

OUTPUT:

Result: A cursors in PL/SQL language are performed.

	 AIM: To perform the normalization in a database system
	Description: Database Normalisation is a technique of organizing the data in the database. Normalization is a systematic approach of decomposing tables to eliminate data redundancy
	The ANY Operator:the any operator allows you to specify multiple values in a where clause and select any value from that list
	The All Operator:the all operator allows you to specify multiple values in a where clause and select all value from that list
	The IN Operator:the in operator allows you to specify multiple values in a where clause.
	The BETWEEN Operator:The BETWEEN operator selects values within a range. The values can be numbers, text, or dates.

